Modeling the spatial variation of explanatory factors of waterpoint status using Geographically Weighted Logistic Regression

1. Introduction

The objective of this exercise is to model the spatial variation of explanatory factors of waterpoint status using Geographically Weighted Logistic Regression in Osun state, Nigeria.

What is Geographically Weighted Regression?

It is a spatial statistical technique that takes non-stationary variables into consideration (e.g., climate; demographic factors; physical environment characteristics) and models the local relationships between these independent variables and an outcome of interest (also known as dependent variable).

2. Data

Following two data sets are used:

  • Osun subzone boundary shapefile in rds format

  • Osun waterpoint details in rds format

3.Deep Dive into Map Analysis

3.1 Installing libraries and Importing files

Loading packages

Let us first load required packages into R environment. p_load function pf pacman package is used to install the packages

pacman::p_load(sf, tidyverse, tmap, corrplot, 
               ggpubr,spdep,rgdal, funModeling,
               blorr,plotly,GWmodel, skimr, caret)

The code chunk below is used to import osun.rds and osun_wp_sf.rds using read_rds() function

osun <- read_rds("data5/rds/Osun.rds")
osun_wp_sf <-  read_rds("data5/rds/Osun_wp_sf.rds")

3.2 Data Wrangling

Dependent variable - Water point status

Independent variable -

distance_to_primary_road

distance_to_secondary_road

distance_to_tertiary_road

distance_to_city

distance_to_town

water_point_population

local_population_1km

usage_capacity

is_urban

water_source_clean

3.3 Exploratory Data Analysis (EDA)

What is the distribution of independent variable?

osun_wp_sf %>%
  freq(input = "status")
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.

  status frequency percentage cumulative_perc
1   TRUE      2642       55.5            55.5
2  FALSE      2118       44.5           100.0

What is the overall statistical summary of Osun waterpoints?

osun_wp_sf %>%
  skim()
Warning: Couldn't find skimmers for class: sfc_POINT, sfc; No user-defined `sfl`
provided. Falling back to `character`.
Data summary
Name Piped data
Number of rows 4760
Number of columns 75
_______________________
Column type frequency:
character 47
logical 5
numeric 23
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
source 0 1.00 5 44 0 2 0
report_date 0 1.00 22 22 0 42 0
status_id 0 1.00 2 7 0 3 0
water_source_clean 0 1.00 8 22 0 3 0
water_source_category 0 1.00 4 6 0 2 0
water_tech_clean 24 0.99 9 23 0 3 0
water_tech_category 24 0.99 9 15 0 2 0
facility_type 0 1.00 8 8 0 1 0
clean_country_name 0 1.00 7 7 0 1 0
clean_adm1 0 1.00 3 5 0 5 0
clean_adm2 0 1.00 3 14 0 35 0
clean_adm3 4760 0.00 NA NA 0 0 0
clean_adm4 4760 0.00 NA NA 0 0 0
installer 4760 0.00 NA NA 0 0 0
management_clean 1573 0.67 5 37 0 7 0
status_clean 0 1.00 9 32 0 7 0
pay 0 1.00 2 39 0 7 0
fecal_coliform_presence 4760 0.00 NA NA 0 0 0
subjective_quality 0 1.00 18 20 0 4 0
activity_id 4757 0.00 36 36 0 3 0
scheme_id 4760 0.00 NA NA 0 0 0
wpdx_id 0 1.00 12 12 0 4760 0
notes 0 1.00 2 96 0 3502 0
orig_lnk 4757 0.00 84 84 0 1 0
photo_lnk 41 0.99 84 84 0 4719 0
country_id 0 1.00 2 2 0 1 0
data_lnk 0 1.00 79 96 0 2 0
water_point_history 0 1.00 142 834 0 4750 0
clean_country_id 0 1.00 3 3 0 1 0
country_name 0 1.00 7 7 0 1 0
water_source 0 1.00 8 30 0 4 0
water_tech 0 1.00 5 37 0 20 0
adm2 0 1.00 3 14 0 33 0
adm3 4760 0.00 NA NA 0 0 0
management 1573 0.67 5 47 0 7 0
adm1 0 1.00 4 5 0 4 0
New Georeferenced Column 0 1.00 16 35 0 4760 0
lat_lon_deg 0 1.00 13 32 0 4760 0
public_data_source 0 1.00 84 102 0 2 0
converted 0 1.00 53 53 0 1 0
created_timestamp 0 1.00 22 22 0 2 0
updated_timestamp 0 1.00 22 22 0 2 0
Geometry 0 1.00 33 37 0 4760 0
ADM2_EN 0 1.00 3 14 0 30 0
ADM2_PCODE 0 1.00 8 8 0 30 0
ADM1_EN 0 1.00 4 4 0 1 0
ADM1_PCODE 0 1.00 5 5 0 1 0

Variable type: logical

skim_variable n_missing complete_rate mean count
rehab_year 4760 0 NaN :
rehabilitator 4760 0 NaN :
is_urban 0 1 0.39 FAL: 2884, TRU: 1876
latest_record 0 1 1.00 TRU: 4760
status 0 1 0.56 TRU: 2642, FAL: 2118

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
row_id 0 1.00 68550.48 10216.94 49601.00 66874.75 68244.50 69562.25 471319.00 ▇▁▁▁▁
lat_deg 0 1.00 7.68 0.22 7.06 7.51 7.71 7.88 8.06 ▁▂▇▇▇
lon_deg 0 1.00 4.54 0.21 4.08 4.36 4.56 4.71 5.06 ▃▆▇▇▂
install_year 1144 0.76 2008.63 6.04 1917.00 2006.00 2010.00 2013.00 2015.00 ▁▁▁▁▇
fecal_coliform_value 4760 0.00 NaN NA NA NA NA NA NA
distance_to_primary_road 0 1.00 5021.53 5648.34 0.01 719.36 2972.78 7314.73 26909.86 ▇▂▁▁▁
distance_to_secondary_road 0 1.00 3750.47 3938.63 0.15 460.90 2554.25 5791.94 19559.48 ▇▃▁▁▁
distance_to_tertiary_road 0 1.00 1259.28 1680.04 0.02 121.25 521.77 1834.42 10966.27 ▇▂▁▁▁
distance_to_city 0 1.00 16663.99 10960.82 53.05 7930.75 15030.41 24255.75 47934.34 ▇▇▆▃▁
distance_to_town 0 1.00 16726.59 12452.65 30.00 6876.92 12204.53 27739.46 44020.64 ▇▅▃▃▂
rehab_priority 2654 0.44 489.33 1658.81 0.00 7.00 91.50 376.25 29697.00 ▇▁▁▁▁
water_point_population 4 1.00 513.58 1458.92 0.00 14.00 119.00 433.25 29697.00 ▇▁▁▁▁
local_population_1km 4 1.00 2727.16 4189.46 0.00 176.00 1032.00 3717.00 36118.00 ▇▁▁▁▁
crucialness_score 798 0.83 0.26 0.28 0.00 0.07 0.15 0.35 1.00 ▇▃▁▁▁
pressure_score 798 0.83 1.46 4.16 0.00 0.12 0.41 1.24 93.69 ▇▁▁▁▁
usage_capacity 0 1.00 560.74 338.46 300.00 300.00 300.00 1000.00 1000.00 ▇▁▁▁▅
days_since_report 0 1.00 2692.69 41.92 1483.00 2688.00 2693.00 2700.00 4645.00 ▁▇▁▁▁
staleness_score 0 1.00 42.80 0.58 23.13 42.70 42.79 42.86 62.66 ▁▁▇▁▁
location_id 0 1.00 235865.49 6657.60 23741.00 230638.75 236199.50 240061.25 267454.00 ▁▁▁▁▇
cluster_size 0 1.00 1.05 0.25 1.00 1.00 1.00 1.00 4.00 ▇▁▁▁▁
lat_deg_original 4760 0.00 NaN NA NA NA NA NA NA
lon_deg_original 4760 0.00 NaN NA NA NA NA NA NA
count 0 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 ▁▁▇▁▁

Let us now select the desired variables by using filter() function and save it in new dataframe called osun_wp_sf_clean

osun_wp_sf_clean <- osun_wp_sf %>%
  filter_at(vars(status,
                 distance_to_primary_road,
                 distance_to_secondary_road,  
                 distance_to_tertiary_road,
                 distance_to_city,
                 distance_to_town,
                 water_point_population,
                 local_population_1km,
                 usage_capacity,is_urban,
                 water_source_clean),
            all_vars(!is.na(.))) %>%
  mutate(usage_capacity = as.factor(usage_capacity))

3.4 Correlation Analysis

Before building the model, let us determine if there are highly correlated variables. First, let us drop the geometry column to proceed to correlation nad select only the desired columns

osun_wp <- osun_wp_sf_clean %>%
  select(c(7,35:39, 42:43, 46:47, 57)) %>%
  st_set_geometry(NULL)
cluster_vars.cor = cor(osun_wp[,2:7])
  corrplot.mixed(cluster_vars.cor,
                 lower = "ellipse",
                 upper = "number",
                 tl.pos = "lt",
                 diag = "l",
                 tl.col = "black")

As we can see that correlation coefficent are not greater than 0.8 and hence no variables are highly correlated.Therefore, all variables can be included in building a model.

3.5 Fitting Generalised Linear Models

glm is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution. Instead of using typical R report, Binary logistic regression report is shown using blr_regress() function

model <- glm(status ~ distance_to_primary_road +
               distance_to_secondary_road+
               distance_to_tertiary_road+
               distance_to_city+
               distance_to_town+
               is_urban+
               usage_capacity+
               water_source_clean+
               water_point_population+
               local_population_1km,
             data = osun_wp_sf_clean,
             family = binomial(link='logit'))
  
  
blr_regress(model)
                             Model Overview                              
------------------------------------------------------------------------
Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
------------------------------------------------------------------------
  data       status     4756      4755           4744           TRUE     
------------------------------------------------------------------------

                    Response Summary                     
--------------------------------------------------------
Outcome        Frequency        Outcome        Frequency 
--------------------------------------------------------
   0             2114              1             2642    
--------------------------------------------------------

                                 Maximum Likelihood Estimates                                   
-----------------------------------------------------------------------------------------------
               Parameter                    DF    Estimate    Std. Error    z value     Pr(>|z|) 
-----------------------------------------------------------------------------------------------
              (Intercept)                   1      0.3887        0.1124      3.4588       5e-04 
        distance_to_primary_road            1      0.0000        0.0000     -0.7153      0.4744 
       distance_to_secondary_road           1      0.0000        0.0000     -0.5530      0.5802 
       distance_to_tertiary_road            1      1e-04         0.0000      4.6708      0.0000 
            distance_to_city                1      0.0000        0.0000     -4.7574      0.0000 
            distance_to_town                1      0.0000        0.0000     -4.9170      0.0000 
              is_urbanTRUE                  1     -0.2971        0.0819     -3.6294       3e-04 
           usage_capacity1000               1     -0.6230        0.0697     -8.9366      0.0000 
water_source_cleanProtected Shallow Well    1      0.5040        0.0857      5.8783      0.0000 
   water_source_cleanProtected Spring       1      1.2882        0.4388      2.9359      0.0033 
         water_point_population             1      -5e-04        0.0000    -11.3686      0.0000 
          local_population_1km              1      3e-04         0.0000     19.2953      0.0000 
-----------------------------------------------------------------------------------------------

 Association of Predicted Probabilities and Observed Responses  
---------------------------------------------------------------
% Concordant          0.7347          Somers' D        0.4693   
% Discordant          0.2653          Gamma            0.4693   
% Tied                0.0000          Tau-a            0.2318   
Pairs                5585188          c                0.7347   
---------------------------------------------------------------

From the above report we can see that the at 95% confidence, the variables distance_to_primary_road and distance_to_secondary_road are insignificant. Hence, let us exclude those variables whose p values are higher than 0.05 and recalibrate the model.

3.6 Recalibirating the model

remodel <- glm(status ~ distance_to_tertiary_road+
               distance_to_city+
               distance_to_town+
               is_urban+
               usage_capacity+
               water_source_clean+
               water_point_population+
               local_population_1km,
             data = osun_wp_sf_clean,
             family = binomial(link='logit'))
  
  
blr_regress(remodel)
                             Model Overview                              
------------------------------------------------------------------------
Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
------------------------------------------------------------------------
  data       status     4756      4755           4746           TRUE     
------------------------------------------------------------------------

                    Response Summary                     
--------------------------------------------------------
Outcome        Frequency        Outcome        Frequency 
--------------------------------------------------------
   0             2114              1             2642    
--------------------------------------------------------

                                 Maximum Likelihood Estimates                                   
-----------------------------------------------------------------------------------------------
               Parameter                    DF    Estimate    Std. Error    z value     Pr(>|z|) 
-----------------------------------------------------------------------------------------------
              (Intercept)                   1      0.3540        0.1055      3.3541       8e-04 
       distance_to_tertiary_road            1      1e-04         0.0000      4.9096      0.0000 
            distance_to_city                1      0.0000        0.0000     -5.2022      0.0000 
            distance_to_town                1      0.0000        0.0000     -5.4660      0.0000 
              is_urbanTRUE                  1     -0.2667        0.0747     -3.5690       4e-04 
           usage_capacity1000               1     -0.6206        0.0697     -8.9081      0.0000 
water_source_cleanProtected Shallow Well    1      0.4947        0.0850      5.8228      0.0000 
   water_source_cleanProtected Spring       1      1.2790        0.4384      2.9174      0.0035 
         water_point_population             1      -5e-04        0.0000    -11.3902      0.0000 
          local_population_1km              1      3e-04         0.0000     19.4069      0.0000 
-----------------------------------------------------------------------------------------------

 Association of Predicted Probabilities and Observed Responses  
---------------------------------------------------------------
% Concordant          0.7349          Somers' D        0.4697   
% Discordant          0.2651          Gamma            0.4697   
% Tied                0.0000          Tau-a            0.2320   
Pairs                5585188          c                0.7349   
---------------------------------------------------------------

Now let us view the confusion matrix with the following evaluation metrics

In binomial logistic regression, the classification table is a 2 x 2 table that contains the observed and predicted model results (shown in the figure below). It is popularly known as contingency table. The table is often called an “error table” or a “confusion matrix”.

Confusion matrix

The contingency table has 4 data cells:

1. Actual 0 Predicted 0 – The number of cases that were both predicted and observed as 0. The records in this cell are referred to as true negatives. The model classification was correct for these records.

2. Actual 0 Predicted 1 – The number of cases that were predicted as 1 yet observed as 0. The records in this cell are referred to as false positives. The model classification was incorrect for these records.

3. Actual 1 Predicted 1 – The number of cases that were both predicted and observed as 1. The records in this cell are referred to as true positives. The model classification was correct for these records.

4. Actual 1 Predicted 0 – The number of cases that were predicted as 0 yet observed as 1. The records in this cell are referred to as false negatives. The model classification was incorrect for these records.

blr_confusion_matrix(model, cutoff = 0.5)
Confusion Matrix and Statistics 

          Reference
Prediction FALSE TRUE
         0  1301  738
         1   813 1904

                Accuracy : 0.6739 
     No Information Rate : 0.4445 

                   Kappa : 0.3373 

McNemars's Test P-Value  : 0.0602 

             Sensitivity : 0.7207 
             Specificity : 0.6154 
          Pos Pred Value : 0.7008 
          Neg Pred Value : 0.6381 
              Prevalence : 0.5555 
          Detection Rate : 0.4003 
    Detection Prevalence : 0.5713 
       Balanced Accuracy : 0.6680 
               Precision : 0.7008 
                  Recall : 0.7207 

        'Positive' Class : 1
blr_confusion_matrix(remodel, cutoff = 0.5)
Confusion Matrix and Statistics 

          Reference
Prediction FALSE TRUE
         0  1300  743
         1   814 1899

                Accuracy : 0.6726 
     No Information Rate : 0.4445 

                   Kappa : 0.3348 

McNemars's Test P-Value  : 0.0761 

             Sensitivity : 0.7188 
             Specificity : 0.6149 
          Pos Pred Value : 0.7000 
          Neg Pred Value : 0.6363 
              Prevalence : 0.5555 
          Detection Rate : 0.3993 
    Detection Prevalence : 0.5704 
       Balanced Accuracy : 0.6669 
               Precision : 0.7000 
                  Recall : 0.7188 

        'Positive' Class : 1

We can compare the results of both confusion matrices before and after excluding the insignifcant variables. There is not much difference in the results though. It is because in general, when an independent variable is removed from a regression model, the overall explanatory or performance of the model will be compromised.  This is the nature of regression models.  However, when an insignificant independent variable was removed from the model,the performance of the model will be lesser than when a significant independent was removed from the model. Hence, we have witnessed the same here in this case as the accuracy is 67.26 % later while recalibrating the model when compared to 67.39% previously.

3.7 Converting into spatial dataframe

Let us convert the simple feature dataframe into spatial dataframe using as_spatial() function. The below code chunk performs the conversion

osun_wp_sp <- osun_wp_sf_clean %>%
  select(c(status,
               distance_to_tertiary_road,
               distance_to_city,
               distance_to_town,
               is_urban,
               usage_capacity,
               water_source_clean,
               water_point_population,
               local_population_1km
           ))%>%
  as_Spatial()
osun_wp_sp
class       : SpatialPointsDataFrame 
features    : 4756 
extent      : 182502.4, 290751, 340054.1, 450905.3  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=4 +lon_0=8.5 +k=0.99975 +x_0=670553.98 +y_0=0 +a=6378249.145 +rf=293.465 +towgs84=-92,-93,122,0,0,0,0 +units=m +no_defs 
variables   : 9
names       : status, distance_to_tertiary_road, distance_to_city, distance_to_town, is_urban, usage_capacity, water_source_clean, water_point_population, local_population_1km 
min values  :      0,         0.017815121653488, 53.0461399623541, 30.0019777713073,        0,           1000,           Borehole,                      0,                    0 
max values  :      1,          10966.2705628969,  47934.343603562, 44020.6393368124,        1,            300,   Protected Spring,                  29697,                36118 

3.8 Bandwidth selection for Generalised Geographically Weighted Regression (GGWR)

The code chunk below is used to calibrate a generalised GWR model using bw.ggwr() function

bw.fixed <- bw.ggwr(status ~distance_to_tertiary_road+
               distance_to_city+
               distance_to_town+
               is_urban+
               usage_capacity+
               water_source_clean+
               water_point_population+
               local_population_1km,
               data = osun_wp_sp,
               family = "binomial",
               approach = "AIC",
               kernel = "gaussian",
               adaptive = FALSE,
               longlat = FALSE)
Take a cup of tea and have a break, it will take a few minutes.
          -----A kind suggestion from GWmodel development group
 Iteration    Log-Likelihood:(With bandwidth:  95768.67 )
=========================
       0        -2890 
       1        -2837 
       2        -2830 
       3        -2829 
       4        -2829 
       5        -2829 
Fixed bandwidth: 95768.67 AICc value: 5681.18 
 Iteration    Log-Likelihood:(With bandwidth:  59200.13 )
=========================
       0        -2878 
       1        -2820 
       2        -2812 
       3        -2810 
       4        -2810 
       5        -2810 
Fixed bandwidth: 59200.13 AICc value: 5645.901 
 Iteration    Log-Likelihood:(With bandwidth:  36599.53 )
=========================
       0        -2854 
       1        -2790 
       2        -2777 
       3        -2774 
       4        -2774 
       5        -2774 
       6        -2774 
Fixed bandwidth: 36599.53 AICc value: 5585.354 
 Iteration    Log-Likelihood:(With bandwidth:  22631.59 )
=========================
       0        -2810 
       1        -2732 
       2        -2711 
       3        -2707 
       4        -2707 
       5        -2707 
       6        -2707 
Fixed bandwidth: 22631.59 AICc value: 5481.877 
 Iteration    Log-Likelihood:(With bandwidth:  13998.93 )
=========================
       0        -2732 
       1        -2635 
       2        -2604 
       3        -2597 
       4        -2596 
       5        -2596 
       6        -2596 
Fixed bandwidth: 13998.93 AICc value: 5333.718 
 Iteration    Log-Likelihood:(With bandwidth:  8663.649 )
=========================
       0        -2624 
       1        -2502 
       2        -2459 
       3        -2447 
       4        -2446 
       5        -2446 
       6        -2446 
       7        -2446 
Fixed bandwidth: 8663.649 AICc value: 5178.493 
 Iteration    Log-Likelihood:(With bandwidth:  5366.266 )
=========================
       0        -2478 
       1        -2319 
       2        -2250 
       3        -2225 
       4        -2219 
       5        -2219 
       6        -2220 
       7        -2220 
       8        -2220 
       9        -2220 
Fixed bandwidth: 5366.266 AICc value: 5022.016 
 Iteration    Log-Likelihood:(With bandwidth:  3328.371 )
=========================
       0        -2222 
       1        -2002 
       2        -1894 
       3        -1838 
       4        -1818 
       5        -1814 
       6        -1814 
Fixed bandwidth: 3328.371 AICc value: 4827.587 
 Iteration    Log-Likelihood:(With bandwidth:  2068.882 )
=========================
       0        -1837 
       1        -1528 
       2        -1357 
       3        -1261 
       4        -1222 
       5        -1222 
Fixed bandwidth: 2068.882 AICc value: 4772.046 
 Iteration    Log-Likelihood:(With bandwidth:  1290.476 )
=========================
       0        -1403 
       1        -1016 
       2       -807.3 
       3       -680.2 
       4       -680.2 
Fixed bandwidth: 1290.476 AICc value: 5809.719 
 Iteration    Log-Likelihood:(With bandwidth:  2549.964 )
=========================
       0        -2019 
       1        -1753 
       2        -1614 
       3        -1538 
       4        -1506 
       5        -1506 
Fixed bandwidth: 2549.964 AICc value: 4764.056 
 Iteration    Log-Likelihood:(With bandwidth:  2847.289 )
=========================
       0        -2108 
       1        -1862 
       2        -1736 
       3        -1670 
       4        -1644 
       5        -1644 
Fixed bandwidth: 2847.289 AICc value: 4791.834 
 Iteration    Log-Likelihood:(With bandwidth:  2366.207 )
=========================
       0        -1955 
       1        -1675 
       2        -1525 
       3        -1441 
       4        -1407 
       5        -1407 
Fixed bandwidth: 2366.207 AICc value: 4755.524 
 Iteration    Log-Likelihood:(With bandwidth:  2252.639 )
=========================
       0        -1913 
       1        -1623 
       2        -1465 
       3        -1376 
       4        -1341 
       5        -1341 
Fixed bandwidth: 2252.639 AICc value: 4759.188 
 Iteration    Log-Likelihood:(With bandwidth:  2436.396 )
=========================
       0        -1980 
       1        -1706 
       2        -1560 
       3        -1479 
       4        -1446 
       5        -1446 
Fixed bandwidth: 2436.396 AICc value: 4756.675 
 Iteration    Log-Likelihood:(With bandwidth:  2322.828 )
=========================
       0        -1940 
       1        -1656 
       2        -1503 
       3        -1417 
       4        -1382 
       5        -1382 
Fixed bandwidth: 2322.828 AICc value: 4756.471 
 Iteration    Log-Likelihood:(With bandwidth:  2393.017 )
=========================
       0        -1965 
       1        -1687 
       2        -1539 
       3        -1456 
       4        -1422 
       5        -1422 
Fixed bandwidth: 2393.017 AICc value: 4755.57 
 Iteration    Log-Likelihood:(With bandwidth:  2349.638 )
=========================
       0        -1949 
       1        -1668 
       2        -1517 
       3        -1432 
       4        -1398 
       5        -1398 
Fixed bandwidth: 2349.638 AICc value: 4755.753 
 Iteration    Log-Likelihood:(With bandwidth:  2376.448 )
=========================
       0        -1959 
       1        -1680 
       2        -1530 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2376.448 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2382.777 )
=========================
       0        -1961 
       1        -1683 
       2        -1534 
       3        -1450 
       4        -1416 
       5        -1416 
Fixed bandwidth: 2382.777 AICc value: 4755.491 
 Iteration    Log-Likelihood:(With bandwidth:  2372.536 )
=========================
       0        -1958 
       1        -1678 
       2        -1528 
       3        -1445 
       4        -1411 
       5        -1411 
Fixed bandwidth: 2372.536 AICc value: 4755.488 
 Iteration    Log-Likelihood:(With bandwidth:  2378.865 )
=========================
       0        -1960 
       1        -1681 
       2        -1532 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2378.865 AICc value: 4755.481 
 Iteration    Log-Likelihood:(With bandwidth:  2374.954 )
=========================
       0        -1959 
       1        -1679 
       2        -1530 
       3        -1446 
       4        -1412 
       5        -1412 
Fixed bandwidth: 2374.954 AICc value: 4755.482 
 Iteration    Log-Likelihood:(With bandwidth:  2377.371 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.371 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.942 )
=========================
       0        -1960 
       1        -1680 
       2        -1531 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2377.942 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.018 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.018 AICc value: 4755.48 

The below code chunk helps us to create generalised models with Binomial option using ggwr.basic() function

gwlr.fixed <- ggwr.basic(status ~distance_to_tertiary_road+
               distance_to_city+
               distance_to_town+
               is_urban+
               usage_capacity+
               water_source_clean+
               water_point_population+
               local_population_1km,
               data = osun_wp_sp,
               bw=bw.fixed,
               family="binomial",
               kernel="gaussian",
               adaptive=FALSE,
               longlat = FALSE)
 Iteration    Log-Likelihood
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 

3.9 Converting SDF into sf data.frame

To assess the performance of the gwLR, first let us convert the sdf object in as data frame by using the code chunk below

gwr.fixed <- as.data.frame(gwlr.fixed$SDF)

Next, let us label yhat values greater than or equal to 0.5 into 1 and else 0. The result of the logic comparison operation will be saved into a field called most

gwr.fixed <- gwr.fixed %>%
  mutate(most = ifelse(gwr.fixed$yhat >=0.5,T,F))
gwr.fixed$y <- as.factor(gwr.fixed$y)
gwr.fixed$most <- as.factor(gwr.fixed$most)
CM <- confusionMatrix(data = gwr.fixed$most,
                      reference= gwr.fixed$y,
                      positive = "TRUE" )
CM
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1833  268
     TRUE    281 2374
                                          
               Accuracy : 0.8846          
                 95% CI : (0.8751, 0.8935)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.7661          
                                          
 Mcnemar's Test P-Value : 0.6085          
                                          
            Sensitivity : 0.8986          
            Specificity : 0.8671          
         Pos Pred Value : 0.8942          
         Neg Pred Value : 0.8724          
             Prevalence : 0.5555          
         Detection Rate : 0.4992          
   Detection Prevalence : 0.5582          
      Balanced Accuracy : 0.8828          
                                          
       'Positive' Class : TRUE            
                                          

Thus, for the comparision, we have used argument positive = “TRUE” and accuracy here is 88% and the sensitivity and specificity values are 89% and 86% respectively which means the model is able to identify 89% of right cases correctly and 86% percent of false cases correctly.

osun_wp_sf_selected <- osun_wp_sf_clean %>%
  select(c(ADM2_EN, ADM2_PCODE,
           ADM1_EN, ADM1_PCODE,
           status))

Now let us append gwr.fixed matrix onto osun_wp_sf_selected to produce an output simple feature object called gwr_sf.fixed using cbind() function

gwr_sf.fixed <- cbind(osun_wp_sf_selected, gwr.fixed)

The estimated or predicted values in a regression or other predictive model are termed the y-hat values. “Y” because y is the outcome or dependent variable in the model equation, and a “hat” symbol (circumflex) placed over the variable name is the statistical designation of an estimated value.

Finally, let us view these yhat values geographically mapped onto Osun division. The lighter the colour lower the yhat value and the darker colour indicates high yhat values i.e predicted values.

tmap_mode("view")
tmap mode set to interactive viewing
prob_T <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_shape(gwr_sf.fixed)+
  tm_dots(col="yhat",
          border.col = "gray60",
          border.lwd = 1)+
  tm_view(set.zoom.limits = c(9,14))
prob_T

4. Conclusion

In this study, we have modeled the spatial variation of explanatory factors of waterpoint status using Geographically Weighted Logistic Regression in Osun state, Nigeria by executing various geographically weighted regression models. The confusion matrix and evaluation metrics helped us in undertanding the performance of the model better. Finally, we have mapped the fixed gwr sf values by varying the colours with respect to yhat values.